

1

The Reiman Gardens and other facilities with butterfly enclosures need to be able to
quickly and reliably store and access butterfly tagging data electronically. It is important that this
data is readily available to facility managers because it can help them optimize their enclosures to
maximize the butterfly's life spans. We are creating a web application that allows guests and
enclosure docents to be able to enter butterfly sightings while they are at an enclosure then the
facility admins will be able to generate meaningful reports(life-span, number of sightings, time
since last sighting, etc.) based on all of the data collected from the sightings. Our application will be
able to adapt to various butterfly exhibits and will allow each exhibit to use their own unique
tagging system.

For our frontend, we are using HTML./CSS/JS and will not be using a framework in order to
maximize performance; for the backend, we will be using Spring framework, our database, we will
be using MongoDB, and our server will be hosted on AWS. We currently have a minimal prototype
that allows guests to enter butterfly sightings. This simple prototype will allow us to get feedback
from our client so we can improve upon our current iteration of the software. Our web application
is readily available to use on devices of all sizes, from phones to desktop computers. We have
ensured that our pages can adapt and still be presentable under all screen sizes and in multiple
browsers. Our next steps will be to implement admin users and allow for multiple facilities within
the same web application, each with its own data. We are also looking into security features in
order to keep our users and admins safe from any cyber threats.

2

Learning Summary

Development Standards & Practices Used
● ISO 639 - Language Code

● ISO/IEC 27001 - Information Security Management Systems

● ISO/IEC 25059 - Systems and Software Quality Requirements and

Evaluation

● ISO/IEC 9797 - Message Authentication Codes (MACs)

● ISO/IEC 19772 - Authenticated encryption

Summary of Requirements

● Functional Requirements

○ User Authentication

○ Support User Group Hierarchy

○ Create Reports from Queried Data

○ Quick Response and Querying Times

○ Portability

● Resource Requirements

○ MongoDB Database

○ AWS Hosting Services

○ Cost Efficient Upkeep

● Aesthetic Requirements

○ Color Scheme

○ Typography

○ Images

● User Experiential Requirements

○ Ease of Navigation

○ Accessibility

● Database Requirements

○ Data Integrity

○ Scalability

○ Performance

○ Design

Applicable Courses from Iowa State University Curriculum
● SE 309

● SE 319

3

● Com S 363

● SE 185

● SE 186X

● CprE 230

● CprE 231

● SE 317

● SE 421

● COM S 252

● COM S 352

● Engl 314

● SpCm 212

● Com S 227

● Com S 228

New Skills/Knowledge acquired that was not taught in courses
● Hosting a web application on AWS

● Exporting a Figma board to HTML/CSS

● Expanded knowledge of Java Spring

● Json web tokens

● Expanded knowledge of MongoDB

4

Table of Contents
1. Introduction.. 7
2. Requirements, Constraints, And Standards...8
3 Project Plan... 13

3.1 Project Management/Tracking Procedures.. 13
3.2 Task Decomposition.. 13
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria...14

Frontend... 14
Backend...14

3.4 Project Timeline/Schedule... 16
Gantt Chart Tasks:..16
Deliverables:..17

3.5 Risks and Risk Management/Mitigation..17
Tasks and Their Associated Risks..17

3.6 Personnel Effort Requirements.. 19
3.7 Other Resource Requirements...24

4 Design.. 24
4.1 Design Context.. 24

4.1.1 Broader Context... 24
4.1.2 Prior Work/Solutions.. 25
4.1.3 Technical Complexity..26

4.2 Design Exploration... 26
4.2.1 Design Decisions... 26
4.2.2 Ideation..27
4.2.3 Decision-Making and Trade-Off..29

4.3 Proposed Design... 30
4.3.1 Overview.. 30
4.3.2 Detailed Design and Visual(s)... 30
4.3.3 Functionality..33
4.3.4 Areas of Concern and Development..34

4.4 Technology Considerations... 34
4.5 Design Analysis...34

5 Testing.. 35
5.1 Unit Testing..35
5.2 Interface Testing..36
5.3 Integration Testing..36
5.4 System Testing...37
5.5 Regression Testing...37
5.6 Acceptance Testing... 37
5.7 Security Testing... 37
5.8 Results... 38

5

6 Implementation.. 39
7 Ethics and Professional Responsibility...41

7.1 Areas of Professional Responsibility/Codes of Ethics... 41
7.2 Four Principles.. 42
7.3 Virtues... 44

8 Closing Material.. 45
8.1 Conclusion... 45
8.2 References... 46
8.3 Appendices.. 47

9 Team..47
9.1 Team Members.. 47
9.2 Required Skill Sets for Your Project.. 48
9.3 Skill Sets covered by the Team.. 48
9.4 Project Management Style Adopted by the team... 51
9.5 Initial Project Management Roles.. 51
9.6 Team Contract... 51

6

List of figures/tables/symbols/definitions (This should be the similar to the
project plan)

2 Requirements, Constraints, And Standards 8

2.1. WEBSITE ADMIN VIEW 8

2.2. WEBSITE GUEST VIEW 8

2.3. COLOR THEMING EXAMPLE 1 10

2.4. COLOR THEMING EXAMPLE 2 10

3 Project Plan 13

3.1 PROJECT GANTT CHART 16

3.2 PERSONNEL EFFORT REQUIREMENT TABLE 19-23

4 Design 24

4.1 BROADER CONTEXT CHART 24

4.2 WEIGHTED DECISION MATRIX 29

4.3 GUEST USER EXPERIENCE EXAMPLE 31

4.4 EXAMPLE TEST CODE 31

4.5 BACKEND MAPPING CHART 32

4.6 DATABASE COLLECTION HIERARCHY EXAMPLE 33

4.7 MONGO COLLECTIONS 33

6 Implementation 39

6.1 WEBSITE PAGE VIEWS 39

6.2 BUTTERFLY SIGHTING ENTRY PAGE 39

6.3 CSS FORMATTING EXAMPLE 40

7 Professional Responsibility 41

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS CHART 41

7.2 FOUR PRINCIPLES CHART 42-43

7

1. Introduction

1.1. PROBLEM STATEMENT

The Reiman Gardens and other facilities with butterfly enclosures need to be able to quickly and
reliably store and access butterfly tagging data electronically. Butterflies within enclosures are
currently being tagged; each facility needs a standardized way to enter and store butterfly sightings
relative to their facility's tagging system. Facilities need a web application that allows guests and
volunteers to quickly enter a butterfly tag sighting, as well as gives facility administrators a fast and
reliable way to view database information. Reporting data is essential for facilities to make educated
decisions on enclosure environments and derive conclusions based on certain butterfly species'
lifespans.

A web application is in development to address the needs of any facility with a tagged butterfly
enclosure. The web application needs to be easy to use for any user and easily accessible from any
device to provide the highest level of sighting entries from any type of user. The web application will
then be used to report on all sightings for administration purposes dynamically.

1.2. INTENDED USERS

There are three groups of intended users for our application, each of which has different roles and
privileges within the application. Each of those users is listed below.

Butterfly Enclosure Guests: A guest is a person who is visiting the butterfly enclosure for
educational or entertainment purposes. A guest visitor could be a person of any age and
background. Guests need an easy to use web application that they can enter a butterfly sighting in
while visiting a butterfly enclosure. Since guests will be using a mobile device to enter butterfly
sightings, they need a web application that can be used on any type of device. Guests also need a
rewarding or valuable experience so they have the intent and reason to use the web app.

Guest users should be able to derive a sense of help or entertainment from using the web
app while visiting the enclosure. We need to market the web application to guests so they can
understand how they are helping the enclosure facility on a high level.

Docent / Volunteers: A docent or volunteer is a facility member who regularly spends time within
the butterfly enclosure. A docent can also be a person of any age and background. Since a docent
will use the web app much more frequently, they need a fast and easy way to continuously enter
sightings. Docents will also benefit from an individual login so their sightings can be entered with
more reputability than a guest visitor. Since docents are more reputable and garner more priority,
docent accounts may also need to be configured with higher levels of privilege to database
information based on administrative needs.

Docent users should derive a sense of help for the facilities enclosure more than just a
guest visitor. Docents will be able to see the impact of the entered sightings and have a higher
priority and sense of belonging within the web app.

Administrators: Administrators will be the person or people in charge of the butterfly enclosure at
their given facility. An administrator will be a person with a higher level of knowledge of butterfly
species as well as their given enclosure and tagging system. Facility administrators will need to

8

configure the web app for their facility and its tagging system as well as configure user accounts for
docent and guest users. Administrators also will need full access to the database of butterfly
sightings and need to be able to report on the data dynamically to benefit the facility.

Administrators will be the primary users of gathered and stored information as they can
make more educated decisions for the future of their butterfly enclosures. Administrators can also
be providers of data for other facilities and researchers to become more educated on environment
variables and year-round habitat conditions for different butterfly species.

2. Requirements, Constraints, And Standards

2.1. REQUIREMENTS & CONSTRAINTS

Functional Requirements

1. User Authentication
a. The website must allow administrators to create accounts, log in, and log out

securely
i. Implement password recovery and reset functionality

ii. Users should be able to register using an email address and password
2. Support User Group Hierarchy

a. The website should handle different user types according to their permissions
i. Guest user- needs to be able to submit the butterflies that they see during

their visit within the web application because it updates butterfly
information

ii. Docent- needs to be able to easily insert butterfly sightings while
maintaining a high level of credibility through secure credentials

iii. Exhibit Admin - Needs to be able to view data from their site because
they want to be able to use the data from their site for research

iv. Super Admin - Needs to be able to view all data because they want to be
able to use the data for research

Figure 2.1 and 2.2 Images display contrast between admin view (left) vs guest user view (right)

9

3. Create Reports from Queried Data
a. The website must be able to properly calculate statistics based on the data, and the

admins request
i. Must be able to calculate the average lifespan of specific butterfly types

and all butterflies from one exhibit
ii. Must be able to calculate the time since the last sighting of an individual

butterfly
iii. Must be able to calculate the number of sightings made on a single

butterfly
iv. Must be able to calculate the total number of butterflies from a specific

species that are currently in the exhibit.
4. Quick Response and Querying times

a. The website must be able to respond quickly to user requests, as well as provide
data in a timely manner to admins.

i. Page load time must be under 2 seconds (constraint)
ii. Interactive elements will respond within 100 milliseconds from click time

(constraint)
iii. Fetching data should be performed in under 2 seconds (constraint)
iv. Generating reports must be performed in under 3 seconds (constraint)

5. Portability
a. The website must be able to adapt and perform on all devices and web browsers

(constraint)

Resource Requirements

1. MongoDB Database
a. The system will use MongoDB as its database in order to efficiently query, store,

and retrieve data
2. AWS Hosting Services

a. The system will use AWS for hosting the website to ensure reliability and security
for users

3. Cost Efficient Upkeep
a. The website should run for no more than $500 per month while maintaining a high

level of performance (constraint)

Aesthetic Requirements

1. Color Scheme
a. The website will use a consistent color palette throughout the website (constraint)
b. The website will have sufficient contrast between text and background for

readability (constraint)

10

Figure 2.3 and 2.4 Images from our website design that display color theme characteristics

2. Typography
a. The website will use web-safe fonts that are easy to read (constraint)
b. The website must have adequate line spacing and margins for readability

(constraint)
3. Images

a. All images used in the website will be high-resolution images and graphics that are
related to the content (constraint)

User Experiential Requirements

1. Ease of Navigation
a. The website’s layout should be intuitive and have a clear, logical structure, making

it easy to navigate (constraint)
b. The website will include navigation elements to assist the user (constraint)

2. Accessibility
a. The website will provide alt text for images (constraint)
b. The website will be available to use on all mobile devices (constraint)
c. The website can be easily accessed by anyone with internet access (constraint)

Database Requirements

3. Data Integrity
3.1. Implement validation rules to ensure data accuracy and reliability
3.2. Ensure data remains consistent throughout with the use of constraints (constraint)
4. Scalability
4.1. The database must be able to upkeep performance as the amount of data grows (constraint)
4.2. The database will be able to scale and handle different exhibits being added to the system
5. Performance
5.1. The database must be able to complete queries in under 500 milliseconds (constraint)
5.2. The database must be able to complete GET, POST, PUT, and DELETE operations in under 500

milliseconds (constraint)

11

6. Design
6.1. The database must be designed in a way that will connect all collections efficiently in order to

maximize performance

2.2 ENGINEERING STANDARDS

Engineering standards are crucial in everyday life because they ensure consistency, safety,
and quality in countless different technology areas and products. These guidelines allow products
from many different manufacturers to work together without needing to put in extra effort for each
individual product. This promotes more innovation as it offers a clear framework for companies to
aim for. This also reduces duplication of effort and ensures that technologies are both safe and
efficient. Standards that are aimed towards safety are also of utmost importance. When engineering
equipment is used in ways that could either aid or hurt a human, it is important to ensure safety in
all systems. Consistency also allows for safety, ensuring random anomalies stay out of everyday
situations and systems.

Here are three standards we have identified through research. We include how we define the
standards as well as why they are important and applicable to our project.

● ISO 639 - Language Code - This standard refers to using language codes rather than the
name of the language for identifiers. Language codes with two or three letters have many
benefits, including being more identifiable to native speakers based on culture and some
languages with similar names.

● This code was chosen because our team had not thought about the opportunity of
non-english speakers utilizing the software and web app. Although the standard does not
directly apply to an application offering multiple languages, it is something for our team to
think about, consider, and incorporate to better the guest user experience.

● ISO/IEC 27001 - Information Security Management Systems - This standard defines that
any company or application must put systems in place to mitigate risk related to the
security of data owned or handled. This is important because it ensures that the
management system is continuously being managed as new threats become apparent as
time goes on.
This code was chosen as we want to focus on security in our project especially for the user
data and facility data that will be held. Since this project will be advertised to other
facilities for their own use, it is very important to give them a safe and secure application
for all users. they will be using this product as their own, and, therefore will need a secure
application.

● ISO/IEC 25059 - Systems and Software Quality Requirements and Evaluation - This
standard defines how software products and systems are crucial to stakeholders and users.
Most notably, it mentions how AI is being used to replace human decision-making, and be
based on incomplete data, which leads to a lesser quality of product. Defining the quality of
a deliverable product ensures that it is of high standard and will not be dramatically
vulnerable in practice.
This code was chosen as it gives a general definition of quality for a software product. It
also defines why high-quality software is important to a client or a user. Notably, the use of
AI could lead to a lesser quality product or could be more vulnerable when used in practice.

12

Ensuring we follow quality guidelines and do not replace human decision-making within
the product's design is highly important.

Each team member chose a set of standards while researching.

All the standards chosen are different, as there are standards for many different topics and
categories. Notably, the ISO/IEC 9797 gives security standards based on Multi-factor
Authentication, specifically Message Authentication Codes, and using block ciphers and dedicated
hash-functions. This is an extremely important and in-depth set of standards specifically focused on
a single version of multifactor authentication. This standard was not chosen for the above as we feel
our web app will not need a multi-factor authentication system implemented; however, this
standard is something each of us is exposed to almost daily. Another chosen standard was ISO/IEC
19772, which is about authenticated encryption and information security. This is similar to the
information security management system standard we listed above but is much more specific.
Particularly, this standard emphasizes the quality of encryption and the need for encryption when
handling user data and sending it from one place to another. This could very well be important to
our project for encrypting user authentication and facility authentication to limit its vulnerabilities
against attackers who may be analyzing network traffic.

Potential design modifications to incorporate the standards mentioned above:

First, we already have an emphasis on the importance of security for the application. The
most notable change is to recognize that the application will be advertised to and used by other
facilities. In these cases, other facilities will be treating the application as their own property,
meaning that any vulnerability could mean a vulnerability to the facility itself. This means there
needs to be a strong emphasis on the vulnerability scanning of the application to mitigate risk in
the future. We may also need to look into more longevity for security in the case that the
application is being used a few years down the road. This goes along with understanding the
standard for authentication encryption and ensuring that we properly handle users' personal
information. Language barriers are also something that we had not previously thought of for project
requirements, which could vastly change the design of the application. Sitting down with the client
and understanding the value a bi-lingual application may bring is an important step towards
creating a better deliverable. In the case we do decide to add additional languages to the
application, we can follow the above standard for language codes. Lastly, we need to shift our
development process to incorporate quality standards and understand the risk of using AI during
development. As long as all team members understand the risk to the project quality that comes
with using AI during development, we can still keep human decision-making and high-quality for
the deliverables.

13

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

We will be using Agile as our project management style for this project. The primary
reasons that we decided on an agile approach were because of the flexibility, incremental delivery,
continuous improvement, and collaboration aspects. Having independent tasks within our backlog
is super important in software development. We do not want to have dependent tasks that could be
delayed because of unexpected issues arising during development. We value the incremental
delivery aspect of agile because we plan on producing prototypes for our client before providing
him with the full version of the product. This ties into the continuous improvement aspect because
as we produce prototypes, we will improve our product based on client feedback. The collaboration
aspect of agile is excellent for software development. We have toned back the daily standup
meetings to once a week to check in with one another and discuss the work we have done and plan
to do.

We plan to track project progress using Git and GitLab. We have a GitLab repository set up
with an issue board and milestones that are dated with deadlines. Inside GitLab we have also set up
a scheme for our branch setup to keep our code organized, allowing for easier project progression
due to simplicity. Git is an amazing tool for software development because of its version control,
which is the main reason we decided to use it. It allows us all to collaborate on our repository
simultaneously and promotes good coding habits.

3.2 TASK DECOMPOSITION

Frontend

● Core HTML Development
○ Converting Figma boards to functional HTML
○ Multi-Page navigation
○ Facility management pages

■ Adaptable page color theming
○ User log-in pages
○ Mobile device optimization

● Backend Interactions
○ User sign-in implementation and authentication
○ Butterfly tagging support
○ Graphical data views
○ Butterfly data filtering and sorting
○ Unique butterfly tagging for each facility

Backend

● Database collection and Layout
○ Create a database management scheme
○ Create database objects
○ Map backend to database
○ Containerization
○ Design backend API
○ User sign-ins and permissions database

■ Secure authentication process
■ Quick and easy sign-in for repeat users

14

○ Data Querying
● Database butterfly storage

○ Database butterfly reports
○ Permanent Server hosting solution
○ Multi-facility tagging support

User Testing

● Test the website with those who will be interacting with the website
○ Test website with facility operators
○ Test website with guests and general public

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Frontend

● UI Design Completion
○ Metric: Percentage of originally requested designs successfully converted to

functional HTML.
○ Milestone: Complete the conversion of 100% of requested views into functional

HTML components.
● Functionality Development

○ Metric: Percentage of interactive elements from the design that function as
intended.

○ Milestone: Ensure all interactive elements are fully functional and have
corresponding tests written.

● Responsiveness
○ Metric: Whether a view is able to adapt to different screen sizes and aspect ratios

while adequately displaying content.
○ Milestone: Ensure all implemented views adapt effectively to various screen sizes,

including Desktop, Phones, and Tablets.
● Accessibility

○ Metric: Number of Web Content Accessibility Guidelines (WCAG) criteria met, as
defined by W3C.

○ Milestone: Achieve an 'AA' level of accessibility by implementing the required
WCAG guidelines.

● Compatibility
○ Metric: Compatibility tests pass rate across target browsers.
○ Milestone: Ensure our designs achieve a 100% pass rate in compatibility tests across

major browsers, including Chrome, Firefox, and Safari.
● Client Acceptance

○ Metric: Level of client satisfaction with the design as measured through feedback.
○ Milestone: Achieve full client satisfaction with all designs, with no further changes

requested after review.

Backend

● API Development and Integration
○ Metric: Percentage of API endpoints developed, tested, and documented.
○ Milestone: Implement 100% of API endpoints outlined in the project requirements,

with thorough integration tests for each endpoint.
● Automated Testing Coverage

15

○ Metric: Percentage of backend code and branches covered by unit and integration
tests.

○ Milestone: Achieve 100% code coverage and 100% branch coverage across systems
to ensure comprehensive testing and reduce the likelihood of bugs in critical areas
of the backend.

● Database Performance and Optimization
○ Metric: Average database query response time for data visualization features.
○ Milestone: Achieve a response time that is at least 50% faster than the previous

design while maintaining equivalent end-user functionality.
● Tagging Adaptability

○ Metric: Capability to integrate specific butterfly tagging systems into the database.
○ Milestone: Successfully incorporate all widely used butterfly tagging systems

adopted by major institutions.
● Security Compliance

○ Metric: Number of security vulnerabilities identified and remediated (tracked via
penetration testing or security audits).

○ Milestone: Resolve 100% of critical vulnerabilities, aiming to avoid common
security risks outlined by OWASP guidelines. Ensure that, to the best of our
abilities, protections are in place against vulnerabilities such as broken access
control, injection, cryptographic failures, and others.

● Error Handling and Uptime
○ Metric: Number of errors that impact user experience or server uptime.
○ Milestone: Implement logging and monitoring systems to ensure that the number

of critical errors impacting user experience or server uptime remains at a
minimum.

● Data Safety and Recovery
○ Metric: Risk of data loss in the event of a system failure.
○ Milestone: Implement robust data backup procedures to ensure that no critical

data is lost during a system failure. Validate backups and confirm the ability to
recover data in the event of a failure.

● User Data Management and Compliance
○ Metric: Compliance with data protection standards as outlined in the GDPR

(General Data Protection Regulation) and CCPA (California Consumer Privacy
Act).

○ Milestone: Achieve compliance with data privacy and protection standards,
ensuring that all user data is encrypted and anonymized where applicable.

16

3.4 PROJECT TIMELINE/SCHEDULE

Figure 3.1

Gantt Chart Tasks:

● Convert Figma Board to HTML
○ Export figma board to code using PxCode
○ Correct responsiveness and design of the exported screens

● Create a Database Management Scheme
○ Brainstorm ideas for database collections and layout
○ Create a structure that will work best for our data types

● Create Database Objects
○ Create database collections
○ Define object parameters

● Containerization
○ Create a container for the backend
○ Create a container for frontend

● Map backend to database
○ Structure backend
○ Define object parameters within the backend code
○ Create and test requests to the database

● Multi-Page Navigation
○ Connect HTML screens via button clicks
○ Allow for user interaction in the UI

● Butterfly Tagging System
○ Allow user input of butterfly tags
○ Create requests to the backend for entering sightings

● Database Query System
○ Create efficient code for querying data

● Design Backend API
○ Plan and define endpoints
○ Implement endpoint calls

● Create Website Data Views
○ Implement admin interaction to create data reports

17

○ Implement calling to backend to gather correct data
○ Display the queried data

● First prototype
○ Deliver a baseline product that our client can test
○ Receive feedback from client
○ Change functionality based on client interactions
○ Repeat this process and iteratively improve our product

● Adding other butterfly systems
○ Implement ability for product to scale to other facilities
○ Allow for multiple admin users
○ Create butterfly tagging systems unique to each exhibit

Deliverables:

Week 4: Initial Concept and Design Review

Week 8: Present responsive screens to client

Week 15: Initial prototype with minimal functionality

Week 20: Second prototype with improvements based on client feedback

Week 24: Third prototype with improvements based on client feedback

Week 26: Finalized product

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Tasks and Their Associated Risks

● Convert Figma Board to HTML
○ Risk 1: Views may not easily convert from Figma to HTML.

■ Probability: 100%
■ Mitigation Strategy: Begin conversion early in the project to allow

sufficient time and resources for completion.
○ Risk 2: Views may not be fully responsive or accessible as planned.

■ Probability: 100%
■ Mitigation Strategy: Focus on achieving WCAG AA accessibility standards

and conduct regular checks to ensure designs are adaptable to target
screen sizes.

● Create Database Objects
○ Risk: Initial database objects may lack sufficient fields or functionality to meet

project needs.
■ Probability: 45%
■ Mitigation Strategy: build out a thorough list of all data points that need to

be stored and get each of those data points with their constraints to be
officially signed off by our client.

● Containerization
○ Risk: Containerizing the app may be more complex than expected.

■ Probability: 50%
■ Mitigation Strategy: Conduct early research to verify the compatibility of

components and ensure they integrate smoothly into a container.
● Database Query System / Map backend to database

○ Risk: Database performance may not meet client requirements.
■ Probability: 80%

18

■ Mitigation Strategy: Optimize the database structure and create indexes
for high-demand queries. Track other potential optimizations during
database creation to maintain performance.

● Multi-Page Navigation
○ Risk: Pages may not be easily navigable.

■ Probability: 60%
■ Mitigation Strategy: Test the navigation design with potential users to

verify ease of use and page hierarchy effectiveness.
● Butterfly Tagging System

○ Risk: System may not support all common butterfly tagging methods used across
sites.

■ Probability: 70%
■ Mitigation Strategy: Consult the client and potential site owners about

their tagging methods and ensure the system can incorporate all identified
methods.

● Design Backend API
○ Risk 1: Backend APIs may lack adequate security.

■ Probability: 50%
■ Mitigation Strategy: Stay aware of common security risks and implement

safeguards, including minimizing stored user data and maintaining regular
backups for data integrity.

○ Risk 2: Initial API list may not cover all required software functions.
■ Probability: 100%
■ Mitigation Strategy: Design APIs with extensibility in mind, allowing the

team to add new functionality as needed.
● Create Website Data Views

○ Risk: System may struggle to display complex data views efficiently, potentially
affecting performance and data accuracy.

■ Probability: 70%
■ Mitigation Strategy: Conduct performance testing for data-heavy views,

consider pre-aggregating data to reduce load, and implement pagination
for large datasets. Gather user feedback early to improve clarity and
usability.

● First prototype
○ Risk: Initial prototype may not align with client expectations, resulting in delays

due to rework.
■ Probability: 80%
■ Mitigation Strategy: Hold frequent, iterative feedback sessions with the

client and conduct regular checkpoints to integrate feedback progressively,
reducing the need for major adjustments.

19

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are
clunky and require a
lot of rework to
function properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization
and rework.

Frontend-to-Backend
Interactions

User sign-in
implementation and
authentication

15 Ensuring the sign-in is
secure and cannot be
exploited is a delicate
process requiring
time.

Butterfly tagging
support

15 Implementing tag
posting and spotting
will require complex
interaction with the
backend.

Graphical data views 20 Creating useful and
streamlined displays
will require advanced
methods we have not

20

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are
clunky and require a
lot of rework to
function properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization
and rework.

yet explored.

Butterfly data filtering
and sorting

15 Ensuring that the
filters and sorting
methods are efficient
and effective will
require deep analysis
of the data and
structure of the
database.

Unique butterfly
tagging for each
facility

15 Allowing facilities to
utilize various tagging
methods requires
great consideration of
the possible methods
and how to allow for
them.

21

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are
clunky and require a
lot of rework to
function properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization
and rework.

Database collection
and Layout

Create a Database
Management Scheme

15 Creating a scheme
that can effectively
manage all of the data
requires a lot of
research and a deep
understanding to
meet the needs
properly.

Create database
objects

15 The objects are
essential to the
structure of the
database and may
need to be reworked if
not done correctly the
first time.

Containerization 15 Complex and requires
proper

22

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are
clunky and require a
lot of rework to
function properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization
and rework.

implementation to
improve performance.

Map backend to
database

20 Involves setting up
complex database
connections to the
backend, which can
cause efficiency issues
if not properly
mapped.

Design backend API 20 Very important
interfaces for the front
end to interact with
that must allow for
scalability.

User Testing Test website with
facility operators

5 Distributing the
website and gathering

23

Task Subtask Projected
Effort(Person-hours)

Explanation

Core HTML
Development

Converting Figma
boards to functional
HTML

20 Figma board to HTML
conversions are
clunky and require a
lot of rework to
function properly.

Multi-Page navigation 10 Properly linking the
web pages requires
meticulous iterations
and testing to ensure
all links work.

Facility management
pages

20 The pages to update a
facilities web page will
be complex and
require many different
features to function.

User log-in pages 5 The sign-in pages
themselves shouldn’t
be too complicated on
the HTML side.

Mobile device
optimization

10 Ensuring that mobile
devices have the same
experience can take a
lot of optimization
and rework.

feedback from the
employees of Reiman

Test website with
guests and general
public

5 Gathering feedback
from the public
utilizing surveys

Figure 3.2

24

3.7 OTHER RESOURCE REQUIREMENTS

The main resource requirement for our project would be hosting the service for our client
on AWS. This hosting service will be used to configure and control the status of the web application
and make it available and easy to use for the client. Other external resources being used are
MongoDB and Java Spring for the backend and database implementation. Java Spring is a free
service that we are utilizing to secure CRUD requests between the front end and the database. Next
would be the implementation of the database using MongoDB, which is a non-relational
collection-based database. Here, we will store collections for each facility and track their specific
tagged butterflies. Lastly, we are implementing Docker so our client can control all services from a
single place. This includes the cloud hosting through AWS and the backend service implementation
through a VM. Docker is a service offered by AWS, so integration will be quick and easy.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context
Area Description Examples
Public health,
safety, and
welfare

Our project will directly impact our
shareholders as they will be
implementing it into their facilities
everyday use. The project can improve
the welfare directly by improving already
existing processes and making everyday
tasks more efficient.

Reducing time taken to enter new
butterflies
Increase accuracy of butterfly info
Increase knowledge of butterfly
needs

Global, cultural,
and social

Our project aims to adapt to butterfly
curators across multiple facilities and
meet their needs. Multiple features of the
website have been created specifically to
meet the needs of those who are
experienced in the field and provide them
useful information.

Inaccurate data or information
about butterflies could result in
harmful changes to the butterflies
treatment routines

Environmental Our project can affect the population of
butterflies by changing the way that
different facilities care for them by
providing detailed information.

Decrease number of butterflies in
an atrium
Increase the amount of food given
to butterflies
Increase lifespan of butterflies

Economic Our project can reduce cost to our client
by increasing efficiency in already
existing processes and improving care
methods for the butterflies.

Improved tagging efficiency leads
to less wasted time for employees
Better care mtheods can reduce
costs from wasted steps

Figure 4.1

25

4.1.2 Prior Work/Solutions

Monarch Watch App - The closest existing application we could find to what we are currently
developing. This app is used to track specifically monarch butterflies as they travel across the world.
This is a paid service that allows people around the world to collaborate together to track the path
of monarch butterflies as they migrate. For more about the app see [1].

Pros:

● Easy to use
● Provides accurate migration information
● Allows for multiple users to work together

Cons:

● Requires payment
● Does not provide detailed data
● Only used by one organization to track one species
● Built for long-distance use

Solar-powered radio tags - Solar-powered radio tags and RFID tag combinations are close to being
applied to butterflies. Currently, a small group is testing this technology with butterflies in the wild.
This would allow for the automation of detection and tracking of butterflies without manual entry
from visible tags. For information about these tags, see [2].

Pros:

● Precise tracking ability
● Automated tracking
● Low weight of 0.06 grams

Cons:

● Not currently available on the market
● Expensive
● Still untested and could have issues

Small RFID Tags - Currently some of the smallest RFID tags could be small enough to use on
butterflies. Unfortunately, these tags have very small range and high costs. “Smaller tags have a
shorter read range since they cannot capture as much energy from a reader antenna.” For more
information about the size and range of small RFID tags, see [3]

Pros:

● Automated tracking
● Small enough to be used on most butterfly species

Cons:

26

● Expensive
● Low range

Previous Project - A previous project to make a similar system was created a few years ago by a
different senior design group from computer science. This project has functioned as a baseline but
has many underlying issues that plague the site and need to be addressed. The client has requested
an entirely new website be created to replace the old system.

Pros:

● Free
● Sticker method of tracking

Cons:

● Hard to navigate
● Long load times
● Missing polish
● Missing needed features

4.1.3 Technical Complexity
This type of application does not currently exist in the industry; facilities commonly use CSV files to
store information that is entered manually. All reporting data is challenging to report on, and no
cross-facility data is being shared or utilized. Our application addresses this need for any facility to
have a standardized way of entering data and reporting on it with the additional advantage of
comparing data across facilities.

The system has three components similar to any other software web application. Complexity grows
when implementing a custom frontend for any number of facilities that utilize the application. This
needs to be adaptable and provide growth for when we are no longer developing. Creating a way
that each facility can have its own UI along with tagging logic increases the complexity of the
project. Having all the data stored in one location provides an easier way to report on data from
multiple facilities but calls for strong logic and reporting options for users due to tagging system
implementations. Taking raw sighting data and displaying it dynamically to administrators and
researchers to a point where they can derive conclusions is the end goal of the project.

This requires extensive frontend development experience to be able to create a quick and
easy-to-use application that is also scalable for any facility. Providing adaptive new endpoints
through quality dynamic code poses challenges on the backend, which will manage any number of
facilities that use the application. Database expertise is required not only to design and implement
a multi-facility database but also to query and display information in valuable ways. This project
requires experience from an extensive list of software technologies and systems, whereas usually, a
developer focuses specifically on a single expertise or technology.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Butterfly Longevity Project – Figma This board contains all UI designs and the connection between
each screen. This is important because we need to ensure that the screens have all the necessary

https://www.figma.com/design/kKdl7bobrSEb2r4cPVb5ya/butterfly-longevity-project?node-id=0-1&node-type=canvas&t=ayIERVCocIqpyb87-0

27

functionality for the client's needs. We also need to ensure that they are in locations that would
make sense to our clients and the users. This is arguably the most important design aspect of our
project as it directly affects user experience in every way. You can not recover from a bad UI design.
We have presented this figma board to our client and have gotten approval.

MongoDB Atlas: Cloud Document Database | MongoDB We have decided to use MongoDB as our
database which is a very important decision to our web applications performance. This decision was
important because it will directly impact how long it takes to load and query data. For our data
types and the amount of data our database will store, we will benefit most from using MongoDB.
MongoDB is very flexible and great at handling a dataset that will continue to grow without losing
performance which is a main concern of ours.

Cloud Computing Services - Amazon Web Services (AWS) We decided to use AWS to host our web
application which is very important to our applications availability. AWS offers high availability
(99.999%) making it extremely reliable for our client and for the other users. AWS also allows for
you to upgrade your plan at any time in order to account for a higher amount of traffic. This will
allow our product to scale and have no performance issues. It is also very cost-effective in
comparison to other options and is a pay-as-you-go price model, meaning we can cancel the service
at any time.

4.2.2 Ideation

To decide on what database to use, we first looked at all of our data that would need to be
stored within the database. Next we estimated which data sets would have exponential growth and
which would remain similar in size as time goes on. We also listed performance and scalability as
two of our most important features in the database. We chose those two traits specifically because
our client's previous product had struggled with that and we were looking to improve on the
previous design. Our 5 considerations and why we chose to use/chose to not use them are as
follows:

MongoDB (Using):

Pros

● Flexible data schema
○ Allows for easy changes in data collections

● Allows for scalability of data size without a tradeoff in performance
● High-performance speeds

○ Fast querying speeds
○ Fast retrieval speeds

● Very little to no cost

Cons

● Does not support traditional SQL joins
○ Can lead to limitation in querying

● Potential redundant data
○ In turn increasing storage costs

MySQL (Not using):

Pros

https://www.mongodb.com/lp/cloud/atlas/try4?utm_source=bing&utm_campaign=search_bs_pl_evergreen_atlas_core_prosp-brand_gic-null_amers-us_ps-all_desktop_eng_lead&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=415204521&adgroup=1208363748749201&msclkid=c541151512fb18ba55237236f7facdfc
https://aws.amazon.com/

28

● High performance speeds
○ Fast querying speeds
○ Fast retrieval speeds

● Built-in security features
● Supports vertical scalability

Cons

● Does not support horizontal scalability
○ i.e. adding traits to a data type

● Lack of schema flexibility
● Limited JSON support

Oracle (Not using):

Pros

● High performance speeds
○ Fast querying speeds
○ Fast retrieval speeds

● Multi-platform support
○ Available on Windows, Linux, Unix and more

● High scalability without performance tradeoffs

Cons

● High costs
● Resource intensive

○ Significant demand of CPU
● Built for enterprise applications

IBM DB2 (Not using):

Pros

● High performance speeds
○ Fast querying speeds
○ Fast retrieval speeds

● Supports XML and JSON formatted data types
● High scalability without performance tradeoffs

Cons

● High costs
● Complex setup and features in order to make the most of the application
● Low flexibility of data schemas

MariaDB (Not using):

Pros

29

● Open source and free to use
● Compatible with MySQL
● Flexible storage engines

Cons

● Lacks advanced features that can improve performance
● Low performance with large data sets
● Lacks professional support and there are not a lot of resources out there on the

product

4.2.3 Decision-Making and Trade-Off

We created a weighted decision matrix to make a final decision on which database we
would utilize for the project. We prioritized the performance and scalability of the platform first, as
the previous project struggled with performance issues and could not handle a large amount of
data. Flexibility and cost are also important factors because of the vast range of data that needs to
be stored and the low budget needed to keep the project running.

Weighted Decision Matrix (Scores range 1-10)

Database Performan
ce (25%)

Scalability
(25%)

Flexibility
(20%)

Cost (20%) Querying
Support
(10%)

Total
Weighted
Score

MongoDB 9 9 9 10 7 9

MySQL 8 6 5 20 8 7.3

Oracle 9 9 6 3 8 7.1

IBM DB2 9 9 4 4 8 6.9

MariaDB 7 5 6 20 7 6.9w

Figure 4.2

Based on the scores of the table, we decided MongoDB was the best fit for our project after
receiving a score of 9. Some of the following factors affected our decision and how we scored the
databases.

Scalability: Horizontal scalability in MongoDB is a large advantage when handling large amounts
of data that will only grow over time. We expect the database could contain many years of butterfly
data that could cause issues on other platforms.

Flexibility: MongoDB allows for a very flexible schema structure that suits our needs, allowing the
database to adapt as the project evolves without requiring complete restructuring.

30

Cost: Since MongoDB is open-source, it offers a great cost advantage over most other options, such
as Oracle and IBM DB2, which require licensing and resource costs.

Performance: MongoDB’s fast querying and retrieval speeds address previous performance issues
the previous group has experienced, making it an even stronger candidate for our use.

4.3 PROPOSED DESIGN

4.3.1 Overview

We will follow a Model-View-Controller design pattern for our website. This means that
there are three main components to the website. The first component is the view, which is the part
of the website that a user will see and interact with. This part of the website must have a
well-designed user interface and will need to take in user input safely. The second component is the
model, which relates to all the data for the users, butterflies, and facilities that must be stored. We
need to establish standards of what exact data will be stored, this will prevent any clashing of data
or inconsistencies in the database. The final section controller, this part of the website, is
responsible for moving any data from the database of information to the actual display on the
website. The controller will need to input data and any data that the database provides in a secure
and efficient manner.

4.3.2 Detailed Design and Visual(s)

Front End

The front-end implementation of the project is not using a framework such as React or Angular.
Instead, it is written in pure HTML, CSS, and JS to avoid performance issues and high device
compatibility. All UX design follows the Butterfly Longevity Project Figma board which can be
found at the following link: Butterfly Longevity Project Figma.

PxCode is a tool used to generate HTML code from Figma boards. We utilized this to generate
HTML code for each view that is presented on the Figma board. This leaves us with 14 generated
views, so 14 generated HTML, CSS, and JS code files. A few views from the Figma board cannot be
easily containerized and will be later implemented manually into the system. These views would
include the database spreadsheet view and the admin home page setup view.

The code then needs to be optimized to resize correctly to mobile, tablet, and desktop views of the
web app. For each view, this will be done quite differently since the containerization of objects in
the view is quite different. The main point of reference is through CSS files and styling guides,
ensuring that top-level containers rely on viewport height and width rather than a pixel amount of
some other variable identifier. Furthermore, low-level containers will need custom styling from
developers to ensure proper function for all screen sizes.

For a more in-depth example of how the app will work, watch the video demo at this link:
https://youtube.com/shorts/4BnmfrQZxho

https://www.figma.com/design/kKdl7bobrSEb2r4cPVb5ya/butterfly-longevity-project?node-id=0-1&node-type=canvas&t=PUxa5pwWe6832WzG-0
https://youtube.com/shorts/4BnmfrQZxho

31

Figure 4.3 (Example of guest user experience)

Another notable Frontend performance feature to be implemented is storing reporting information
on the client side. As of right now a problem with the reporting is when searching the table or
adding filters to generated reports, a new server request is made with every change. instead we can
have all this filtering be done on the client side to avoid server lag and improve the overall
performance of the system.

Implementation of report views for mobile devices are yet to be created. If the client desires to keep
the table report for mobile devices then reporting views will be optimized for mobile and tablet
devices. Ensuring these are easy to understand and use is up to developer implementation and will
be constantly updated and corrected for improvement.

Backend

As mentioned above, Java Spring is the utility service that is being used for the backend of the
application. There are two main purposes of the Backend, communicate data from the backend to
be displayed to the user on the Frontend, and take user data from the Frontend and store it in the
database. This is done by following a Get, Post, Put, Delete HTTP connection API, which is readily
available through the Spring service.

Controller classes within the backend will be created based on views. Currently, All the Login pages
will have an associated controller, the Generating Report page will have an associated controller,
and the Tagging pages will have an associated controller. The image below shows an example of a
Get and Post mapping implemented for testing within the controller.

Figure 4.4 (Example test code)

32

Each of the following table entries will have its own implementation of a request mapping. All
requests will use JSON for communication as that is the form the data will be stored in. Request
code can be written in multiple ways and will be up to the developer's interpretation for
implementation.

Get Post Put Delete

Get Facility Theme Login Request UpdateFacility Theme Delete Invalid
Butterfly Sightings

Get Facility Assets
(Logo, Tag Method,
etc.)

Post Butterfly Sighting Update Facility Assets Delete User Accounts

Get Butterfly
information for
specific facility

Create Facilities and
Facility Admin
Accounts

Update Admin
Account password or
information

Delete Facility and
Facility Information

Get all butterfly
information with
specified filters

Add a new Butterfly
Species

Update a butterfly
sightings information

Delete/Remove
Butterfly Species

Figure 4.5

Requests will use JSON request bodies when needed rather than parameter variables to keep api url
simple and easy to understand. Response bodies will also be given in JSON so data will not have to
be altered after retrieving it from the database. Requests should be reused whenever possible to
avoid duplicate requests in different controller classes.

Database

MongoDB is the chosen service for our database, with the reasoning shown in the above
sections. I will describe the high-level database collection schema and how it will hold information
for our users. It's notable to mention that MongoDB is a non-relational database meaning it does
not utilize tables to hold information. Rather, MongoDB stores data in collections; within
collections are objects that store data in a JSON format.

To maximize performance for each facility, we have chosen to create a collection for each facility
that will be utilizing the web app. The following model resembles how the database collections will

be organized.

33

Figure 4.6 (Example of Database collection hierarchy)

Each facility will have its hierarchy of collections with the above fields being included in
each collection object. Separating the facility butterflies from each other makes it much easier to
give reporting information based on that individual facility. This means only their butterfly data will
be parsed for filtering and returned to the user.

In the special case, a super admin will request butterfly reporting information from
multiple facilities; this is the only time a join condition will be implemented. Since different
facilities may have the same tagging method, it's essential to include the location of each butterfly
directly within its database object entry. This means even when multiple facility butterfly
collections are joined together and presented, Butterfly entries can still be distinguished by
location.

Figure 4.7

For a more high-level and easy-to-understand model of the design, please refer to the following
document: Detailed Design and Visuals

4.3.3 Functionality

Our design centers on two primary use cases: logging butterfly sightings into the database
and outputting and analyzing this sighting data. The app enables users to easily input sightings,
tagging location, time, and other details. These inputs are stored in a database for streamlined
analysis and retrieval.

https://docs.google.com/document/u/1/d/1lNdo0ViOSMNm-1q6JCr1jWVB_ia3lmOKEsM30jcEimI/edit

34

Additionally, the app includes a robust user management system, allowing for varying
access levels based on user roles. This ensures that different users, from researchers to citizen
scientists, have tailored access to the database and app features. For example, while a researcher
may access detailed data and analytical tools, a casual user may only input sightings.

The design is also adaptable across institutions, enabling each to manage its own data
access policies and customize the user experience as needed. This flexibility ensures the app serves
diverse institutional needs, facilitating collaborative and secure data collection across multiple
organizations.

4.3.4 Areas of Concern and Development

Our current design is on track to meet all project requirements and user needs. So far, any
challenges we’ve encountered have been manageable with our chosen tools and design approach,
which offer the flexibility and scalability needed for our application. The extensibility of our tools
has allowed us to adapt smoothly, and we see no need for major changes at this stage.

At present, we have no significant concerns about the development process and, thus, no
specific issues to address. However, as we move forward, we’ll continue monitoring for any potential
areas needing refinement and remain open to feedback from clients, TAs, and faculty advisers to
ensure our design remains aligned with expectations.

4.4 TECHNOLOGY CONSIDERATIONS

MongoDB: This database is ideal for flexible, semi-structured data like sightings. While it lacks
some transactional integrity compared to SQL databases, its scalability and JSON-friendly structure
make it a strong choice. Although a SQL database like PostgreSQL could improve data consistency,
MongoDB’s flexibility aligns better with our needs.

Spring Boot: Chosen for its robustness and strong support for RESTful APIs, Spring Boot simplifies
backend development and integrates seamlessly with MongoDB. Although complex, its built-in
features reduce boilerplate, saving time. Alternatives like Node.js could offer a lighter stack, but
Spring Boot’s stability and Java-based environment are ideal for our goals.

HTML/CSS/JavaScript: These core web technologies provide broad compatibility and control over
the UI, allowing us to build a responsive and accessible interface. While frameworks like React or
Vue.js could streamline development, using plain HTML/CSS/JavaScript keeps our front end
lightweight and manageable.

4.5 DESIGN ANALYSIS

So far, we’ve successfully translated our frontend design concepts from Figma into HTML, which is
now fully viewable and loadable. However, we have yet to implement the backend functionality and
connect the pages, which will primarily involve JavaScript. In the future, we will need to link the
frontend to the backend APIs, which are being developed concurrently. On the backend, we've
made progress on implementing the APIs and connecting the database to support our needs. We
have completed basic functionality for butterfly tagging and sightings but still need to implement
user authentication, user management, and additional API features to complement the tagging and
sightings system. Looking ahead, we plan to focus on finalizing these integrations and ensure the
full system works seamlessly. While the overall design is feasible, we are addressing key
functionalities in parallel to avoid any delays in the user experience or data management.

35

5 Testing

5.1 UNIT TESTING

Frontend units being tested:

● UI Components
○ Manually opening each page in three separate browsers (Chrome, Edge, and Safari)

to ensure compatibility
○ Manually checking the responsiveness of each page to different screen sizes by

adjusting the screen size in the browser to ensure compatibility with all device
types

● Calls to the Backend
○ Create mock calls to Postman to ensure that all endpoints are responding correctly

and our system properly handles errors
● Page Navigation

○ Manually click through the navigational elements, ensuring that we can reach each
page from one another.

● Individual Functions
○ Set up unit tests to isolate each individual function
○ Set up unit tests to test different functions being called in succession to ensure

functionality does not change

Backend/Database units being tested using JUnit tests:

● Tagging System
○ Tag-System Relationships

■ Tags correctly belong to their associated tag systems.
■ Tag systems can identify the tags they encompass.

○ Tag Definitions
■ A specific tag is properly checked against a tag definition to confirm

inclusion.
■ All tags generated by a specific tag are correctly validated as part of a given

definition.
○ Equality and Hashing

■ The equals and hashCode implementations for tags, tag components, and
tagging systems are tested to:

● Guarantee consistent behavior in data structures like HashSet and
HashMap.

● Ensure that equality works as intended across various use cases.
● Database Actions

○ Document Requirements
■ Each database document has specific logic requirements, and unit tests

verify that these requirements are consistently met.
○ Duplicate Prevention

■ Duplicate entries cannot be added to the database, following defined
constraints.

■ Business logic for uniqueness is enforced for all objects.
○ Insertion and Deletion Integrity

■ When a document is inserted, all linked documents are updated or created
as necessary.

■ When a document is deleted, related documents are either safely removed
or updated to reflect the change, preventing orphaned records.

36

○ Permission Validation
■ Each database operation (e.g., insertion, deletion, update) is checked

against the permissions of the request sender.
■ Unauthorized requests are rejected, ensuring secure and compliant access

to sensitive data.

5.2 INTERFACE TESTING

Frontend to Backend:

● Testing API endpoints
○ Validate that the endpoints are correct and using the right request method (GET,

POST, PUT, or DELETE)
○ Ensure correct error handling for invalid inputs and edge-cases

Backend to Database:

● Query Validation
○ Validate query data flow, results, and result formatting
○ Confirm response time is appropriate and query is optimized for performance

without sacrificing correctness

5.3 INTEGRATION TESTING

Backend Integration:

● Integration tests involve a running MongoDB instance (or an embedded database) to verify
actual database operations.

● Once the database and backend are connected, manual checks are performed to validate
key workflows like user creation, tag assignment, and data retrieval for sightings.

Backend-Frontend Integration:

● Once the frontend and backend are connected, we manually test the data-driven
functionalities to ensure they work as intended. This includes workflows such as:

○ User authentication and authorization.
○ Tagging and spotting processes.
○ Displaying data for various institutions and users.

● Since the API is already verified during backend testing, the focus is on ensuring the
integration works as expected in real-world scenarios.

● This approach ensures that any issues arising from frontend-backend interactions are
identified and resolved efficiently without duplicating API-level verifications.

Screen Functionality Integration for Frontend:

● Navigational Integration
○ Ensure that the new page can be properly navigated to and from based on existing

screens
● Data Fetching Integration:

○ Ensure the page properly receives and displays all data obtained from requests to
the backend

37

5.4 SYSTEM TESTING

For frontend, we will have automated unit tests that will navigate through both common and
uncommon workflow patterns. We will reach a coverage level of at least 90% with this set of unit
tests. We will utilize the interface testing strategies in our system tests by setting up mock calls
through Postman in our unit testing scripts. This will allow for testing data to not interfere with
production data.

Frontend testing will include unit testing and end-to-end testing to ensure a viable user experience.
End-to-end tests are arguably the most important tests to conduct; however, unit testing helps
create a foundation for each module to ensure proper usage. End-to-end testing will be the final
form of testing implemented within the test suite for the front end, ensuring all GUI elements are
functioning properly.

Our system-level testing strategy ensures the backend operates reliably by combining automated
and manual approaches. Unit tests verify individual components, ensuring their functionality in
isolation. Interface and integration tests use a hosted MongoDB instance to validate operations like
inserting, retrieving, and deleting data while confirming relationships and constraints are upheld.

For deployment, we perform manual testing to ensure services are accessible externally and
workflows like user registration and tag assignment function as expected. This layered approach
ensures all components and their interactions meet project requirements while focusing on
practical, real-world functionality.

5.5 REGRESSION TESTING

We will have a set of automated test cases that we will run each time with new coding updates. We
have a CI/CD pipeline setup within GitLab to help us achieve this. We are using git and gitlab which
will easily allow us to revert back to older versions of the project at any time. Due to our agile
workflow, regression testing is made quite easy. Valuable continuous integration testing will be able
to run previous tests on new versions of code before it is merged into the main branch and creates
conflict in deployment. Each branch will be tested when committed to, ensuring no previous test
cases are broken in the process of development.

5.6 ACCEPTANCE TESTING

We will ensure performance metrics are met, this includes page load time and request response
time. We will ensure that exported files of data reports are of a high quality and manageable
download size. Along with these quantitative acceptance tests, we will also have regular qualitative
testing in the form of meetings with the client/product owner to ensure project scope and goals are
met. These qualitative tests will require strong communication with the client to meet the needs of
his expectations.

5.7 SECURITY TESTING

Our project does value security to an extent. Since our web app will be marketed to other facilities
for usage, information privacy is a strong concern. Sensitive information for each facility involved

38

could be held in the database or on the site's frontend. This being said, we are taking security
testing principles into account when developing the web app.

Since we are using AWS and Docker to host both the database and frontend web app, we will have a
strong built-in security infrastructure in place. Most of our work will be done to ensure backend
requests cannot be manipulated in any way. This means no SQL or query injection into fields for an
attacker to retrieve database information pertaining to facility or user account data. Along with this
we will ensure that each request is properly formatted and cannot have request parameters nor
request bodies manipulated by an outside user to try and break the site. This will be implemented
with both frontend and backend logic to ensure user input is treated properly by the system.

Lastly, vulnerability testing will be one of the later forms of security testing we do. As stated before,
AWS should have a strong infrastructure in terms of machine security, meaning we will have little
work to do when configuring host machine security; however, vulnerability testing, port scanning,
and more will be administered to ensure safety. This will also be adapted with AWS machine
configuration to ensure ports are closed, secure versions of operating systems are chosen, and no
severe connection vulnerabilities are present in which an attacker could gain access and enumerate
through.

Lastly, since we are using AWS we will have longevity with machine security as AWS security
systems will be updated even after we have completed development on the project.

5.8 RESULTS

Our testing results thus far indicate strong compliance with requirements and user needs. All unit
tests have passed successfully, validating the individual components of our system. Additionally,
manual testing of workflows and components confirms that the design performs as expected. While
these tests do not guarantee an error-free implementation, they significantly reduce the likelihood
of bugs in the software.

Qualitatively, client feedback has been positive, particularly regarding the UI design. The service's
speed meets user expectations, and further performance testing is deemed unnecessary at this stage
due to the already satisfactory user experience. Moving forward, our focus will remain on
maintaining this level of reliability as new features are integrated.

39

6 Implementation
Frontend

The goal for the end of the semester was to have a functioning prototype of the guest user
experience on a live server. This includes each guest page having full functionality on any devices,
navigation between pages being properly implemented, and requests to the backend sending and
receiving information to display on the page.

Views

Figure 6.1

Each view is configured to handle all mobile, tablet, and desktop devices. Navigation of pages is
implemented in javascript through button listeners. Error handling is implemented based on
required input fields for each page, not letting the user progress until the proper information is
included. Upon making a tag request, a database call is made to create a new sighting, which
returns the information of the tagged butterfly if found and returns an error message if the tag does
not exist in the system, in which the user will not be redirected.

Figure 6.2

40

Backend

The goal for the end of the semester was to have a functioning database and backend that
implements requests to retrieve, modify, and store reporting information. This includes database
table design, request style, and properties, and Spring setup and implementation.

The backend uses the Java Spring framework to handle requests between the frontend and the
database. Requests are split into four controller classes that handle retrieving and providing
information to the database. These controllers are currently Butterfly, Domain, Species, and User
which have a combined 19 requests. The createSighting request is the prominent one that is
currently used in the guest experience. Formatting follows a JSON structure with the same format
being implemented throughout; the body of the createSighting request is shown below.

Figure 6.3

The request body sends the username of the currently logged in
user along with the facility ID that is currently being used. Tag
information is then passed to the backend (so any tag type can
be used) which allows for the backend to find the proper tagged
butterfly entry. The foreground of the tag is sent in an embedded
list, which allows for any type of tag; here, we are specifying the
alphanumeric entries on the tag that the user has entered.

This request then proceeds to fetch the tagged butterfly and
construct a new sighting entry for the given facility within its
facility collection table.

The request will respond with a similar JSON body which is used
to populate the following screen for the frontend. This includes
the butterfly’s common name, species name, and a picture
provided by the user of the given butterfly. This can be seen in
the example image from the frontend section above. Username,
facility information, and sighting time are entered into the

sighting database, which can later be reported on.

Database structure consists of a multitude of MongoDB collections, Butterfly, Domain, Species, and
User, each of which is represented by a specific object. Here’s a rundown of the information
contained in each object:

41

7 Ethics and Professional Responsibility

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of Responsibility Definition ACM Code of Ethics Team Description

Work Competence Work is completed to
the highest quality
within our teams
ability

2.1 Strive to achieve
high quality in both
the processes and
products of
professional work

Regular code testing
and coding reviews
prior to merging
changes to our main
branches

Financial
Responsibility

Keep costs to a
minimum while
maintaining quality

1.2 Avoid harm Researched several
hosting services and
picked the one that is
most cost-effective

Communication
Honesty

Give updates on work
you have done, plan to
do, and are currently
doing

1.3 Be honest and
trustworthy

Sharing with each
other what we are
working on

Health, Safety,
Well-Being

Ensure the security of
the facilities and users

1.2 Avoid harm We are looking into
implementing
security for our
website

Property Ownership Respect the
ownership of
resources and ideas
available to us

1.5 Respect the work
required to produce
new ideas, inventions,
creative works, and
computing artifacts

We ensure that all of
the content we use is
either cited or free for
use

Sustainability Ensure
environmentally
friendly software and
use sustainable tools

1.1 Contribute to
society and to human
well-being,
acknowledging that
all people are
stakeholders in
computing.

We chose
technologies that are
well-established and
will be serviced for
many years to come

Social Responsibility Upkeep user
engagement and
involvement amongst
guests at the facilities

2.7 Foster public
awareness and
understanding of
computing, related
technologies, and
their consequences.

We designed our UI in
a way to keeps our
users engaged

Figure 7.1

42

What we are currently doing:

Currently, we are keeping regular contact via Discord messaging to update each other on
the work that we are doing. We are using Git and GitLab for version control as well as quality
control. We utilize code reviews and code tests prior to merging any code changes to our main
branches. This ensures that we are keeping a high quality of code and will reduce the risk of finding
bugs down the line. We can see our progress through our GitLab issue board, which has all of the
things we plan to do, are currently working on, and have finished working on. We have
implemented existing software features in order to improve our design and increase sustainability.

Area we are doing well in:

Work Competence: We have ensured that all code changes are reviewed and tested by at
least one other member of the team before merging a branch. This ensures quality work and keeps
us all accountable for fixing any oversights in our own code caught by another team member.

Area we need to improve in:

Communication Honesty: We currently do not always keep each other updated on what
we are working on and there can be disconnects between what we expect someone to be doing vs
what they are actually doing. This can be harmful to our progress as we don’t want to assume
something is being done when it is actually not being worked on. Going forward, we will start to
implement more frequent communication of our work via online calls and discord messaging.

7.2 FOUR PRINCIPLES

Beneficence
(Promoting
Good)

Nonmaleficence
(Avoiding Harm)

Respect for
Autonomy

Justice

Public health,
safety, and
welfare

Our project
design greatly
increases the
performance and
ability to report
administrators,
which affects
their day-to-day
workflow.

Our design does
not harm the
general
well-being of
users in any way.

Our design
allows each
facility to
configure their
UI in their own
way which can
benefit their
personal brand
and image.

Our design will
have the same
functionality for
each facility, not
creating an
imbalance of
features from
location to
location.

Global, cultural,
and social

Our design
promotes a more
accessible and
well-performing
workplace within
any facility that
decides to utilize
our application.

Our design does
not harm the
values of any
specific cultural
groups or people,

Since our design
isn’t required to
be used by
guests, there is
no cultural
autonomy
impact on our
design.

Our project
design will
benefit any
facility enclosure
workspace for
administrators,
volunteers, and
guests in a
multitude of
ways.

43

Figure 7.2

Environmental Beneficence is very important to our project. Since our design relies on guest visitors
to utilize the application, we need to prove to them that they are helping the facility create a better
environmental life for the butterflies based on species. Our design will already ensure the
availability of data to administrators; however, we still need guests to participate in sighting entries
to provide more quality data.

Environmental Autonomy is weak in our project due to the reliance on tagged butterflies. Tags on
butterflies disrupt their natural life; however, we believe this is made up for the positive impact the
design of the project can have. Our project also did not propose tagging of butterflies. Butterflies in
facilities were already tagged for information research purposes in which we are providing a
valuable tool for facilities to utilize.

Environmental The design does
aim to provide
data to
administrators
and researchers
to benefit the
longevity of
butterflies, which
I would say is a
good thing to
promote.

Our design does
depend on
tagged butterfly
enclosures which
could be seen as
a harm to the
natural
environment for
butterflies.

Tagging
butterflies could
have an
environmental
autonomy
impact, but our
project builds on
the basis that the
butterflies are
already tagged.
However, this is
likely still a
negative impact
on butterfly
autonomy.

Our project
design will
provide butterfly
enclosure
administrators
with relative
information on
butterfly life
spans based on
species. This can
be used to derive
the
environmental
impacts of
enclosures on
specific species'
lifespans.

Economic Our web
application will
provide Butterfly
Exhibits with an
inexpensive way
to maintain their
data while
keeping a
high-quality user
experience for
their guests.

We chose an
inexpensive
hosting service
in order to
mitigate the
amount of
money our client
needs to spend.

Exhibits don’t
have to pay for a
new tagging
system, as our
web application
will be able to
handle any
system they
choose to use.

All exhibits will
have access to
the web
application at no
cost.

44

7.3 VIRTUES

List and define at least three virtues that are important to your team. Describe what you will do or
have done as a team to support these virtues among all team members.

Each team member should also answer the following:

● Identify one virtue you have demonstrated in your senior design work thus far? (Individual)
o Why is it important to you?
o How have you demonstrated it?

● Identify one virtue that is important to you that you have not demonstrated in your senior
design work thus far? (Individual)

o Why is it important to you?
o What might you do to demonstrate that virtue?

Andrew

Accountability has been a virtue I have demonstrated thus far in our senior design project. This is
important to my character and taking responsibility for my actions, along with taking responsibility
for my assigned work for the team. Persevering and communicating with my team to ensure I meet
deadlines and quality work is keen when it comes to accountability. I have shown this virtue by
being clear and honest with my team in my work progress and communicating my own
responsibilities for the project.

Determination is a virtue that I would like to work on moving forward with the project. Although I
think I am determined to meet deadlines and project goals, I haven’t acted on this virtue up to this
point. being more determined in the future could help the team collaboratively push the project
further than its intended goal and boost team performance. To demonstrate this virtue, I could take
more of a leadership role and accept more accountability for the project in order to increase
determination in finishing the project for not only me but my team as well.

Alex

Collaboration is a virtue that I have shown while working on this project through participating in
code reviews and sharing my work and knowledge with other group members. I ensure that all of
the code I add is tested and reviewed by another team member to align with our team's standards. I
make sure that everyone is aware of what I am working on and make sure to update team members
on the work we need to complete.

Resilience is a virtue that I could improve upon going forward with the project. I feel that
sometimes I will run into a difficult problem and it will deter me from completing work that I need
to get done. I sometimes will put the work on hold for too long and it could delay my completion
time when I could have completed it earlier.

Charlie

Reliability is a virtue that I have shown consistently throughout this project. It is important to
always follow through with your word given to your teammates, especially when working with
deadlines as it can cause incomplete products if not properly addressed. I have shown this
throughout the semester by ensuring anything I commit to is complete by the needed deadlines.

45

Creativity is a virtue that can lead to great solutions for a problem. Unfortunately, I feel that
sometimes I have not taken full advantage of this virtue and resort to the safe option of doing what
I know already. This virtue is important to innovating and creating new better solutions to existing
problems. To demonstrate this virtue, I could start to put more effort into thinking of new possible
methods to accomplish issues that I may have previously handled in a different way.

Carter

Tenacity has been key for me during this project. It's important to follow through on
commitments, especially with deadlines, to avoid leaving tasks unfinished. I've made sure to meet
every deadline and complete all my responsibilities on time throughout the semester.

Punctuality is crucial for keeping everything on track, but I recognize I’ve struggled with being on
time for meetings and check-ins. Being punctual helps maintain momentum and respect for
everyone's time. To improve this, I plan to better manage my schedule and set earlier reminders to
ensure I’m always on time.

Jaret

Adaptability is a crucial skill and component that a software engineer must have. Many times a
project may need to be adjusted or an approach will need to be changed since there are flaws
existing in the original plan. The ability to willingly adjust your plan and make the necessary
changes is an important part of the job of a software engineer

 Perseverance is a virtue that is important for a software engineer to possess. Software development
is not always a pretty process and can bring many headaches to the user. This virtue has been
demonstrated throughout the semester since there have been several small roadblocks and
challenges that the team has faced and have needed to overcome.

8 Closing Material

8.1 CONCLUSION

The main goal of the project was to work with our client to understand the needs of the project and
to plan our approach for development. Different website screens have been converted from Figma
boards that were received from our client which demonstrated a desired appearance of the
interface. A prototype has been created that represents a basic form of the back-end environment,
which contains models for each of the major objects that need to be stored.

During this first part of our project, we set out several goals for us as a team to achieve. Our first
goal was to learn how we could work together as a team. During our time together, we have been
able to learn about each other’s strengths and weaknesses in our work and how to cover each other.
Our second goal was to build a good working relationship with our client and supervisor. This goal
we have partially accomplished, but due to the nature of our project, we have not been able to be in

46

contact with our client or supervisor that often since we have had no major updates or deliverables.
Our third goal was to continuously present high-quality work that meets the deadlines. We have
continuously presented exemplary work to our professors, clients, and supervisors. Our fourth goal
was to be in regular communication with our other team members. This goal has been met since
regular weekly meetings have been held and additional communication has been made. The final
goal was to create a prototype of our project that we could present to our professors, clients, and
supervisors. This final goal has not technically been met yet, however, it is expected to be completed
before the end of the semester.

Reflecting on our goals and the progress that has been made on them, while many of the goals were
achieved, there were a few that our team fell short of. The biggest goal that the team fell short of
was staying in regular communication and building a working relationship with our client and
supervisor. Our team struggled to stay in consistent communication with our supervisor, which
hurt our relationship. It was determined that we need to take a step back and put more emphasis on
our communication. We began to meet with our supervisor more regularly and have been working
on repairing our relationship. Our team members were all in regular contact with each other which
allowed for each member to thrive in their own regard.

8.2 REFERENCES

List technical references and related work / market survey references. Do professional citation style
(ex. IEEE). See link:
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[1] K, Baum, “Monarch Listing Announcement Expected Next Week,” monarchwatch.org.
Nov. 26, 2024. [Online]. Available:https://monarchwatch.org/blog/. [Accessed Dec. 4,
2024]

[2] K, Ball, S, Burcher. D, Puma, “The Sky’s the limit for Monarchs Wearing Solar-Powered
Radio Tags,” beecityusa.org. Dec 7, 2023. [Online].
Available:https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered
-radio-tags/. [Accessed Dec. 4, 2024]

[3] M, Roberti, “What is the World’s Smallest RFID Tag?,” rfidjournal.com. [Online].
Available:https://www.rfidjournal.com/ask-the-experts/what-is-the-worlds-smallest-rfid-
tag/. {Accessed Dec. 4, 2024]

[1] K, Baum, “Monarch Listing Announcement Expected Next Week,” monarchwatch.org. Nov. 26,
2024. [Online]. Available:https://monarchwatch.org/blog/. [Accessed Dec. 4, 2024]

[2] K, Ball, S, Burcher. D, Puma, “The Sky’s the limit for Monarchs Wearing Solar-Powered Radio
Tags,” beecityusa.org. Dec 7, 2023. [Online].

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf
https://monarchwatch.org/blog/
https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered-radio-tags/
https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered-radio-tags/
https://www.rfidjournal.com/ask-the-experts/what-is-the-worlds-smallest-rfid-tag/
https://www.rfidjournal.com/ask-the-experts/what-is-the-worlds-smallest-rfid-tag/
https://monarchwatch.org/blog/

47

Available:https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered-radio-tags
/. [Accessed Dec. 4, 2024]

[3] M, Roberti, “What is the World’s Smallest RFID Tag?,” rfidjournal.com. [Online].
Available:https://www.rfidjournal.com/ask-the-experts/what-is-the-worlds-smallest-rfid-tag/.
{Accessed Dec. 4, 2024]

8.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design document.

If you have any large graphs, tables, or similar data that does not directly pertain to the problem but
helps support it, include it here. This would also be a good area to include hardware/software
manuals used. May include CAD files, circuit schematics, layout etc,. PCB testing issues etc.,
Software bugs etc.

9 Team
Complete each section as completely and concisely as possible. We strongly recommend using
tables or bulleted lists when applicable.

9.1 TEAM MEMBERS

● Alex Herting
● Andrew Ahrenkiel
● Carter Awbrey
● Charles Dougherty
● Jaret Van Zee

https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered-radio-tags/
https://beecityusa.org/the-skys-the-limit-for-monarchs-wearing-solar-powered-radio-tags/
https://www.rfidjournal.com/ask-the-experts/what-is-the-worlds-smallest-rfid-tag/

48

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

● Agile
● AWS Server Hosting
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

9.3 SKILL SETS COVERED BY THE TEAM

Jaret Van Zee

● Agile
● CI/CD
● Cyber Security
● Data Security
● Database Management
● GitLab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

49

Andrew Ahrenkiel

● Agile
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● GitLab, Git, Git CLI
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Charles Dougherty

● Agile
● Database Management
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● Software Architecture
● Software Testing

50

Alex Herting

● Agile
● Database Management
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

Carter Awbrey

● Agile
● AWS Server Hosting
● CI/CD
● Cyber Security
● Database Management
● Data Security
● Database Design
● Gitlab
● Git
● Git Command Line Interface
● HTML/CSS/JS
● Java
● Java Spring
● JUnit Testing
● MongoDB
● Project Management
● SCRUM
● Social Engineering
● Software Architecture
● Software Testing

51

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Agile

● GitLab issue board used to assign and track team progress

● Weekly group “stand up”

● Project tickets/issues split amongst group members

● Issues identified and added to the backlog

● Biweekly client check-ins acting as product owner

9.5 INITIAL PROJECT MANAGEMENT ROLES

1) Alex Herting Frontend Developer

2) Andrew Ahrenkiel Full Stack Developer

3) Carter Awbrey Backend Lead

4) Charles Dougherty Frontend Developer

5) Jaret Van Zee Backend Developer

9.6 TEAM CONTRACT

Team Members:

1) Alex Herting 2) Andrew Ahrenkiel

3) Carter Awbrey 4) Charles Dougherty

5) Jaret Van Zee

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular teammeetings:
2. Preferred method of communication updates, reminders, issues, and scheduling

(e.g., e-mail, phone, app, face-to-face):
3. Decision-making policy (e.g., consensus, majority vote):
4. Procedures for record keeping (i.e., who will keep meeting minutes, how will

minutes be shared/archived):

(1) Regular team meetings outside of class will be done virtually over Discord. The regular team
meeting will occur on Friday at 6 pm.

(2) The preferred method of communication for updates, questions, reminders, or general
information will be done through Discord chat or Discord voice call. If communication is needed
for any inner conflicts or major issues, it will be done in person or via Discord video/voice call.

52

(3) Decisions will be made by a majority vote since there is an odd number of team members. Team
members should be given a fair amount of time to discuss their choice and why they want that
choice. Team members in the minority vote should comply with the decision made. Team members
in the majority should see if they can compromise by including any qualities of the minority's
decision.

(4) Carter Awbrey will be the official team auditor for team meetings. The backup team auditor will
be Jaret Van Zee. The team auditor will be expected to take notes from each meeting. The notes
should well document the current progress of each team member’s work, any roadblocks, and
planned work. All important information should also be documented in the auditor’s notes, such as
new meeting times, deadlines, and important workflow changes. The auditor should make the notes
available no more than 1 day after the meeting to the rest of the team.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team
meetings:

2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:

3. Expected level of communication with other teammembers:
4. Expected level of commitment to team decisions and tasks:

(1) All team members are expected to show up on time to any scheduled team meeting unless they
communicate prior to the meeting. All team members are expected to participate whenever they
can in a meeting. All team members should be actively listening whenever another team member is
speaking. Conflict and discussion are okay in a team meeting, but members must respect each
other’s ideas–even if they do not agree with the idea being discussed.

(2) Team members will need to put their full effort into whatever work they are presenting to the
rest of the team. All hard deadlines should be met ahead of time to review each other's work. Any
teamwork will be divided equally among all team members as fairly as possible. A soft deadline will
be determined, likely 2-3 days before the hard deadline, that all team members should have their
segment of work completed by.

(3) Team members are expected to regularly update their other team members. If any team member
runs into a roadblock, they should notify their team members in no more than 24 hours. If a team
member runs into any difficulties or roadblocks, a discussion or team meeting should be done in
order to solve the issue.

(4) A team member is expected to work on their work or tasks for an average of three hours per
week. Three hours per week is not a hard limit; this number could be higher or lower on a weekly
basis. These three hours will not include any regularly scheduled team meetings.

Leadership

1. Leadership roles for each teammember (e.g., team organization, client interaction,
individual component design, testing, etc.):

2. Strategies for supporting and guiding the work of all teammembers:
3. Strategies for recognizing the contributions of all teammembers:

53

(1) These are the leadership roles that each team member fulfills:

Jaret Van Zee - Database Manager & Timeline Organizer

Carter Awbrey - Project Manager & Visionary

Alex Herting - Frontend Manager

Charles Dougherty - UX/UI Design Director

Andrew Ahrenkiel - Team Organization & Technical Design

(2) These are the strategies each team member will follow to support and guide the work of other
team members.

Jaret Van Zee - I will ensure that all team members are getting assigned the work that is appropriate
for them. I will also make sure that work is getting split fairly between the team members and that
work is getting done on time.

Carter Awbrey - As the project manager, I will oversee the communication between members to
ensure that deliverables are met and that our product meets the needs of our client. Additionally, I
will work to address and mediate issues that may arise between team members. This doesn’t limit
my work to solely leadership based contributions, but does include them.

Alex Herting - As the frontend manager, I will be responsible for creating tickets related to the
front end and assigning them to members of the team. Checking in to see how far along we are on
tasks and re-assigning tickets accordingly.

Charles Dougherty - It is essential that all parts of the team work collaboratively to create one whole
product rather than pieces strung together. I will ensure that each person feels included and
understands the goal of what is currently being worked on and make sure that what has already
been completed follows the requirements. I will also contribute to handling conflicts in code or
design choices to create a better final product, even with differing ideas.

Andrew Ahrenkiel - As the Team Organization leader, I will ensure weekly meetings have applicable
purposes and are productive. I will be responsible for the Gitlab issue board and tracking member
progress. As the Technical Design Lead, I will ensure all code within the development branches is
functional and appropriate; I will review the majority of code merges to ensure code quality.

(3) These are the strategies each team member will follow to recognize each other’s work.

Jaret Van Zee - Keep to set soft and hard deadlines for work that needs to be completed. Will do
regular check-ups on team members to ensure they are doing okay on their own work.

Carter Awbrey - Follow set team deadlines and communicate regularly and clearly with other team
members.

Alex Herting - Setting appropriate deadlines and checking in weekly on the front-end tasks to make
sure that we are meeting those deadlines.

54

Charles Dougherty - Follow deadlines, checking in on each area of the project and not just where I
am currently working, checking GitLab commits and pushes, and discussing future
improvements/changes.

Andrew Ahrenkiel - Gitlab issues, weekly check-ins, code commits and pushes, feature branches,
etc.

Collaboration and Inclusion

Describe the skills, expertise, and unique perspectives each teammember brings to the
team.

Strategies for encouraging and supporting contributions and ideas from all teammembers:

1. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how
will a teammember inform the team that the team environment is obstructing
their opportunity or ability to contribute?)

(1) These are a list of skills, experience, expertise, and unique perspective that each team member
brings to the team:

Jaret Van Zee - He is currently working as an IT intern. Jaret also has skills in back-end development
and database management. Jaret can use his knowledge from his cyber security minor to bring new
perspectives to the team and the overall security of the software being developed.

Carter Awbrey - Skills include server-side and cloud integration having worked with cloud products
many times in the past. Additionally I have experience writing UI in HTML/CSS/JS or using React
frameworks. I have professional experience writing backend/server software in .NET and Java as well
as integrating that with frontend products.

Alex Herting - Skills include full-stack development, having experience with React framework and
SQL for databases. I currently work as a software developer, which has given me experience with the
software development process and managing large workloads. Have experience in Javascript in web
development.

Charles Dougherty - Experienced in working in teams to develop a strong final product. During my
internships, I have worked in SQL and Mongo databases and also developed many frontend
applications. Finding new solutions to a problem is one of my strong suits as I enjoy finding new
technologies and discovering what can be done within the limitations.

Andrew Ahrenkiel - Skills include full-stack development, particular experience with both React
and Angular, along with Mongo, SQL, and Oracle. I can bring a unique viewpoint of the SDLC from
my internship experience with Wells Fargo, having worked as a DevOps engineer and a Fullstack
Software Engineer. I also recently worked on a database migration project as part of my internship,
which may provide me unique expertise in database design

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
2. Strategies for planning and assigning individual and team work:

55

3. Strategies for keeping on task:

(1) These are the official goals that this team will strive to achieve this semester:

I. Learn how to work with each other as a team.
II. Build a good working relationship with our client(s) and supervisor

III. Continuously present high quality work as a team and individually to our professors,
client(s), and supervisor. Ensure that all work completed meets its expected deadline.

IV. Regularly communicate with each other about how progress on our work.
V. Create a detailed and exact prototype of product we plan to build for our client in the

following semester.

(2) Whenever new work is assigned to the team, a timeline should be created that the team will
follow to make sure that the work is completed by the deadline. Each team member will be assigned
work that best meets their expertise or interest. All work will be divided evenly to the best of our
ability.

(3) During each team meeting, each team member will discuss what work they have completed,
what work they plan to complete in the next few days, and if the member has run into any issues.
The other team members will compare their current work progress to the expected timeline of
progress to ensure that the team member is getting their allotted work complete.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?
2. What will your team do if the infractions continue?

(1) If any team member knowingly violates the team contract, the following procedures will be met.

First Infraction - A soft warning, the team member that committed the infraction will asked by
another team member to not commit that infraction again

Second Infraction - A strong warning, one or two team members will directly say how the team
member’s infractions have affected the team and what they’ve done

Third Infraction - Official Team Meeting, an official team meeting will be made in order to discuss
how this can stop in the future. A resolution must be reached and a remediation plan must be
created in order for the team meeting to be successful

(2) If a team member is consistently committing infractions against the team after the warnings and
team meetings. All team members except the team member committing the infractions will meet
with the SE 491 professors to discuss a best possible solution for the rest of the solution. This may
involve 491 professors directly talking with the team member committing the infractions, a
specialized plan may be created for the team member, or possibly removal of the team member
from the team.

56

a) I participated in formulating the standards, roles, and procedures as stated in this contract.

b) I understand that I am obligated to abide by these terms and conditions.

c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) DATE: 09- 19 - 2024

2) Alex Herting DATE: 09 - 19 - 2024

3) DATE: 09- 19 - 2024

4) Carter Awbrey DATE: 09- 19 - 2024

5) JaretVan Zee DATE: 09- 19- 2024

